

Name of Prgram: BCA + MCA (Banking Technology)

	0	\ O			-	/						
							TEAC	CHING &	z EVALU	JATION SCHEME PRACTICAL		
COURSE CODE	CATEGORY	COURSE NAME	L	Т	Р	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	
BCCA301	Compulsory	Computer Organization and Architecture	3	1	0	4	60	20	20	0	0	

 $\label{eq:Legends: L-Lecture; T-Tutorial/Teacher Guided Student Activity; P-Practical; Q/A-Quiz/Assignment/Attendance; MST-Mid Semester Test.$

***Teacher Assessment** shall be based on following components: Quiz/Assignment/Project/Participation in class activities, given that no component shall exceed more than 10 marks

Course Education Objectives (CEOs):

- a) To introduce the fundamental knowledge needed for the design of computer systems.
- b) Explain in detail the logical operation of the most common standard digital components.
- c) To show how the various data types found in digital computers are represented in binary form in computer registers.
- d) To introduce a register transfer language and show how it is used to express micro operations in symbolic form.
- e) To present the organization and design of a basic digital computer.
- f) To deal with the central processing unit (CPU).
- g) To understand the concepts in modern computer architecture.

Course Outcomes (COs):

Students will have thorough knowledge about:

- a) The logical operation of the most common standard digital components.
- b) The design of computer systems.
- c) The various data types found in digital computers and how are they represented in binary form in computer registers.
- d) Register transfer language and will be able to show how it is used to express micro operations in symbolic form.
- e) The concepts in modern computer architecture.

Unit-I

Number System: Binary, Octal, Hexadecimal; Character Codes: BCD, ASCII, EBCDIC; Logic gates, Boolean Algebra, Canonical and Standard Forms, K-map simplification, Half Adder, Full Adder, Half Subtractor, Full Subtractor.

Shri Vaishnav Institute of Computer Applications

Unit-II

Combinational logic Design: Binary Parallel Adder, Carry look ahead adder, BCD Adder, Decoders, Encoders, Multiplexers, Demultiplexers; Sequential Logic: Flip-Flops – RS, JK, D and T Flip Flops.

UNIT-III

Register Transfer and Micro-operations: Register Transfer Language, Register Transfer, Bus and Memory Transfers, Arithmetic Micro-operations, Logic Micro-operations, Shift Micro operations, Arithmetic logic shift unit.

UNIT-IV

Basic Computer Organizations and Design: Instruction Codes, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle, Memory-Reference Instructions, Register reference instructions, Input-Output Instructions,

UNIT-V

Central Processing Unit: Introduction, General Register Organization, Stack Organization, Instruction Formats, Addressing Modes, Difference between RISC and CISC.

Text Books:

- 1. M. Morris Mano, "Computer System Architecture", 3e, Pearson Education, Inc. 2007
- 2. William Stallings, "Computer Organization and Architecture", 8e, Pearson, 2010
- 3. Subrata Ghoshal, "Computer Architecture and Organization", 1e, Pearson, 2011
- 4. Malvino, "Digital Computer Electronics: An Introduction to Microcomputers", 2e, McGraw Hill Education, 1984

Name of Prgram: BCA + MCA (Banking Technology)

			Teaching & Evaluation Scheme									
Subject Code]	Theory	_	Pract	ical					
	Category	Subject Name	End Sem University Exam	Two Term Exam	Teacher Assessment	End Sem University Exam	Teacher Assessment	L	Т	Р	CREDITS	
BCCA302	Compulsory	Mathematical Foundation of Computer Science – III	60	20	20	0	0	3	1		4	

Course Education Objectives (CEOs):

• To introduce the students with the optimization techniques of the Operation Research

Course Outcomes (COs): After the successful completion of this course students will be able to:

- understand and apply the optimization techniques in the LPP.
- find solution by the simplex method.
- apply the optimization techniques.
- formulate and solve queue model.
- understand and apply the advanced optimization techniques.

UNIT – I

Introduction to the Operation Research, Models in OR, Linear Programming

UNIT – II

Simplex Method, Computational problems, Computer solution of linear programs

UNIT – III

Network analysis – Assignment problems, Maximal flow problem, Shortest route problem, Minimal Spanning tree problem.

UNIT – IV

Queuing Models – M/M/1 model, Limited queue capacity, Multiple Servers,

UNIT – V

Reliability Models, Inventory Models – EOQ, Non zero lead time, Dynamic Programming – Developing an optimal decision policy, multiple state variables, Curse of dimensionality

References

- 1. TahaHamdy A: Operation Research; an introduction, Sixth ed., PHI, 2001
- 2. Gillett Billy E: Introduction to Operation Research, Tata-Mcgraw Hill, 1979

Name of Program: BCA + MCA(Banking Technology)

							TEACHING & EVALUATION SCHEME					
							1	THEORY	<i>l</i>	PRACTICAL		
COURSE CODE	CATEGORY	COURSE NAME	L	Т	Р	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	
BCCA303	COMPULSORY	Database Management Systems	3	1	0	4	60	20	20	0	0	

 $\label{eq:Legends: L-Lecture; T-Tutorial/Teacher Guided Student Activity; P-Practical; C-Credit;$

Q/A-Quiz/Assignment/Attendance, MST - Mid Sem Test.

***Teacher Assessment** shall be based on following components: Quiz/Assignment/Project/Participation in class (Given that no component shall exceed 10 Marks)

Course Educational Objectives (CEOs):

- To provide a sound introduction to the discipline of database management as a subject in its own right, rather than a compendium of techniques and product specific tools.
- To understand the different issues involved in the design and implementation of a database system.
- To introduce to systematic database design: physical and logical database designs, database modeling, different database models
- To present SQL and procedural interfaces to SQL to query, update and manage a database
- To give an an understanding of essential DBMS concepts such as: database security, integrity, concurrency, distributed database, and intelligent database, Client/Server (Database Server), Data Warehousing.
- To design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS.
- To introduce the concepts of transactions and transaction processing.

Course Outcomes (COs): After completion of the course students will be able to

- Understand the database systems concepts
- Design any Desktop application using an entity relationship diagrams (ERD) to express requirements and demonstrates skills to model data requirements and create data models.
- To learn and understand various Database Architectures and Applications.
- apply the knowledge of the subject to any particular database implementation using SQL.
- Apply the normalization concepts to use the database efficiently
- Handle prescribed business problem:

UNIT-I

Introduction: Data and Information ,Data Base, Advantage of DBMS approach, various views of data, data independence, schema and subschema, data models, Database languages, DBA and users, Data Dictionary, Database system architecture.

Shri Vaishnav Institute of Computer Applications

UNIT-II

ER model: basic concepts, design issues, mapping constraint, keys, ER diagram, weak and strong entity sets, specialization and generalization, aggregation, inheritance, design of ER schema, from ER schema to tables.

UNIT-III

Domains, Relations and Keys: domains, relations, kind of relations, relational database, various types of keys, candidate, primary, alternate and foreign keys.

Relational Algebra and SQL: The structure, relational operations, modifications of database, idea of relational calculus, basic structure of SQL, set operations, aggregate functions, null values, nested sub queries, derived relations, views, join relations, SQL-DDL, DML and DCL.

UNIT-IV

Dependencies and Normal Forms: Basic definitions, dependencies, closure set of dependencies trivial, non trivial, irreducible set of dependencies, introduction to normalization, non loss decomposition, Functional Dependency diagram, Different dependencies and Normal forms up to fifth normal form, dependency preservation. **Database Integrity:** General idea. Integrity rules, domain rules, attribute rules, relation rules, Database rules, assertions, triggers, integrity and SQL.

UNIT-V

Transaction, Concurrency and Recovery: Basic concepts, ACID properties, Transaction states, Implementation of atomicity and durability, concurrent executions, basic idea of serializability, concurrency control, deadlock, failure classification, storage structure types, stable storage implementation, data access, recovery and atomicity- log based recovery, deferred Database modification, immediate Database modification, checkpoints.

Distributed Database: Basic idea, distributed data storage, data replication, data fragmentation horizontal, vertical and mixed fragmentation.

Text Books:

1. A Silberschatz, H.F Korth, Sudersan, "Database System Concepts", MGH Publication.

- 2. C.J. Date "An introduction to Database Systems"
- 3. Elmasri & Navathe, "Fundamentals of Database Systems", III ed. Morgan Kauffman
- 4. B.C. Desai. "An Introduction To Database Systems", BPB
- 5. Raghurama Krishnan "Database Systems", TMH

Name of Program: BCA + MCA (Banking Technology)

							TEACHING & EVALUATION SCHEM				
]	THEORY PRACT			
COURSE CODE	CATEGORY	COURSE NAME	L	Т	Р	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*
BCCA304	COMPULSORY	Operating Systems	3	1	0	4	60	20	20	0	0

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P – Practical; C - Credit;

Q/A-Quiz/Assignment/Attendance, MST - Mid Sem Test.

***Teacher Assessment** shall be based on following components: Quiz/Assignment/Project/Participation in class (Given that no component shall be exceed 10 Marks)

Course Educational Objectives (CEOs): The course is designed to make students:

- Familiar with design of operating systems as resource manager of a computer system
- Aware about the basic concepts of operating system architecture
- Understand about the concepts of processor management and memory management techniques
- Familiar with deadlock handling and inter-process communication
- Understand the device management.

Course Outcomes (Cos):

- The student will be able to understand the internal design of operating system.
- The student will be able to demonstrate operating system structure.
- The student will be able to demonstrate the scheduling and memory management techniques.
- The student will be able to understand the IPC and other techniques.
- The student will be able to understand device management system of computer.

UNIT-I

Introduction to Operating System:- Objectives, functions and the services provided by Operating System. Evolution of operating system:-Batch processing, Multiprogramming, Multithreading, Time-sharing systems, Real Time, Distributed systems. Operating system structure:-System calls and system programs.

UNIT-II

Process Management: -Process concept, Process Control Block, Process states, Process scheduling, CPU scheduling: - Basic concept and scheduling criteria, Long term, medium term , short term schedulers, various Scheduling algorithms, Measurement of performance of processor.

UNIT-III

Memory management:-Logical and physical address spaces, Memory management without Swapping or Paging, Swapping and paging, Contiguous, allocation and its drawbacks, Non-contiguous allocation. Virtual memory: - Demand paging and its need, Performance of demand paging, Page replacement and its need, Thrashing and allocation of frames.

Shri Vaishnav Institute of Computer Applications

UNIT-IV

Deadlocks: - Characterization of deadlock, Methods of handling prevention, detection and avoidance, Recovery from deadlock.

Case Study of Linux: History, Features, Architecture of Unix and Linux, Linux Shell and kernel, Linux file system, simple shell commands, Editors, using vi editors, working with files, absolute and relative paths.

UNIT-V

I/O system: - Various I/O devices, Device drivers, structure of I/O software, Transforming I/O request of h/w operation. Secondary storage structure:- Disk structure, Disk Scheduling algorithms (First come first serve, shortest seek time first, SCAN, C-SCAN, LOOK and C-LOOK algorithms), Disk management, Swap space management and Disk reliability.

Text Books:

- 1. Silberschatz Galvin, Operating System concept, 5th edition.
- 2. D. M. Dhamdhare, System Programming and operating system, Tata McGraw Hill,2nd edition.
- 3. Milan Milenkovi'c, Operating System concept and design, Tata McGraw Hill.
- 4. Tanenbaum, A.S. "Modern Operating System", Prentice Hall of India Pvt. Ltd..
- 5. William Stallings "Operating Systems", Prentice Hall of India Pvt. Ltd.
- 6. Joshi R.C. "Operating System" Wiley India.

BBAI501 HUMAN VALUES AND PROFESSIONAL ETHICS

SUBJECT CODE		TEACHING & EVALUATION SCHEME											
	SUBJECT NAME	Tì	IEORY		PRACT				2				
		END SEM University Exam	Two Term Exam	Teachers Arrennee nt*	END SEM University Exam	Lenchers Assessme	L	Т	P	CREDI			
BBAI501	Human Values and Professional Ethics	60	20	20			4	-	-	4			

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

*Teacher Assessment shall be based on following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objective

The objective of the course is to disseminate the theory and practice of moral code of conduct and familiarize the students with the concepts of "right" and "good" in individual, social and professional context

Examination Scheme

The internal assessment of the students' performance will be done out of 40 Marks. The semester Examination will be worth 60 Marks. The question paper and semester exam will consist of two sections A and B. Section A will carry 36 Marks and consist of 5 questions, out of which student will be required to attempt any three questions. Section B will comprise of one or more cases / problems worth 24 marks.

Course Outcomes

- 1. Help the learners to determine what action or life is best to do or live.
- 2. Right conduct and good life.
- To equip students with understanding of the ethical philosophies, principles, models that directly and indirectly affect business.

COURSE CONTENT

Unit I: Human Value

1. Definition, Need for Human Values, Sources of Values

Shri Vaishnav Institute of Computer Applications

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

- 2. Essence of Values
- Classification of Values (Temporal Values, Universal Values, Instrumental Values, Terminal Values)
- 4. Values Across Culture

Unit II: Morality

- 1. Morality its meaning and definition
- 2. Values Vs Ethics Vs Morality
- 3. Concept of Impression Management
- 4. Impression Management Strategies (Intimidation, Ingratiation, Self-promotion, Supplication, Exemplification)

Unit III: Leadership in Indian Ethical Perspective.

- 1. Leadership, Pre-requisites of Leadership
- 2. Approaches to Leadership, Leadership Styles
- 3. Ethical Leadership
- 4. Values in Leadership

Unit IV: Business Ethics

- 1. Business Ethics its meaning and definition
- 2. Relevance of Ethics in Business organizations.
- 3. Theories of Ethics (Teleological, Deontological)
- 4. Code of Ethics

Unit V: Globalization and Ethics

- 1. Globalization and Business Changes
- 2. Values for Global Managers
- 3. Corporate Social Responsibility
- 4. Benefits of Managing Ethics in Work Place.

Suggested Readings

- 1. Kaur, T. (2004). Values and Ethics in Management. Galgotia Publishing Company: New Delhi
- Kaushal, S.L. (2006). Business Ethics. Concepts, Crisis and Solutions. Deep & Deep Publications Pvt. Ltd.: New Delhi
- 3. Beteille, Andre (1991). Society and Politics in India. AthlonePress: New Jersey.
- 4. Chakraborty, S. K. (1999). Values and Ethics for Organizations. Oxford University Press
- Fernando, A.C. (2009). Business Ethics An Indian Perspective .India: Pearson Education: India

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

- Fleddermann, C. D. (2012). Engineering Ethics. New Jersey: Pearson Education / Prentice Hall.
- 7. Boatright, J.R. (2012). Ethics and the Conduct of Business. Pearson. Education: New Delhi.
- 8. Crane, A.and Matten, D. (2015). Business Ethics. Oxford University Press Inc:New York.
- Murthy, C.S.V. (2016). Business *Ethics Text and Cases*. Himalaya Publishing House Pvt. Ltd:Mumbai
- Naagrajan, R.R. (2016). Professional Ethics and Human Values. New Age International Publications: New Delhi.

Shri Vaishnav Institute of Computer Applications

Name of Program: BCA + MCA (Banking Technology)

							TEACHING & EVALUATION SCHEME						
							1	THEORY	*	PRACTICAL			
COURSE CODE	CATEGORY	COURSE NAME	L	Т	Р	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*		
BCCA306	COMPULSORY	Lab-I (DBMS Lab)	0	0	4	2	0	0	0	30	20		

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

Q/A-Quiz/Assignment/Attendance, MST - Mid Sem Test.

***Teacher Assessment** shall be based on following components: Quiz/Assignment/Project/Participation in class (Given that no component shall be exceed 10 Marks)

Course Educational Objectives (CEOs):

- To provide a sound introduction to the discipline of database management as a subject in its own right, rather than a compendium of techniques and product specific tools.
- To understand the different issues involved in the design and implementation of a database system.
- To introduce to systematic database design: physical and logical database designs, database modeling, different database models
- To present SQL and procedural interfaces to SQL to query, update and manage a database
- To give an understanding of essential DBMS concepts such as: database security, integrity, concurrency, distributed database, and intelligent database, Client/Server (Database Server), Data Warehousing.
- To design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS.
- To introduce the concepts of transactions and transaction processing.

Course Outcomes (COs): After completion of the course students will be able to

- Understand the database systems concepts
- Design any Desktop application using an entity relationship diagrams (ERD) to express requirements and demonstrates skills to model data requirements and create data models.
- To learn and understand various Database Architectures and Applications.
- apply the knowledge of the subject to any particular database implementation using SQL.
- Apply the normalization concepts to use the database efficiently
- Handle prescribed business problem:

List of Experiments:

1. To study Basic SQL commands (create database, create table, use, drop, insert) and execute the following queries using these commands:

- Create a database named 'Employee'.
- Use the database 'Employee' and create a table 'Emp' with attributes 'ename', ecity', 'salary', 'enumber', 'eaddress', 'depttname'.

Shri Vaishnav Institute of Computer Applications

• Create another table 'Company' with attributes 'cname', 'ccity', 'empnumber' in the database 'Employee'.

2. To study the viewing commands (select, update) and execute the following queries using these commands:

- Find the names of all employees who live in Delhi.
- Increase the salary of all employees by Rs. 5,000.
- Find the company names where the number of employees is greater than 10,000.
- Change the Company City to Gurgaon where the Company name is 'TCS'.

3. To study the commands to modify the structure of table (alter, delete) and execute the following queries using these commands:

- Add an attribute named ' Designation' to the table 'Emp'.
- Modify the table 'Emp', Change the datatype of 'salary' attribute to float.
- Drop the attribute 'depttname' from the table 'emp'.
- Delete the entries from the table ' Company' where the number of employees are less than 500.

4. To use (and, or, in , not in, between , not between , like , not like) in compound conditions and execute the following queries using them:

- Find the names of all employees who live in 'Gurgaon' and whose salary is between Rs. 20,000 and Rs. 30,000.
- Find the names of all employees whose names begin with either letter 'A' or 'B'.
- Find the company names where the company city is 'Delhi' and the number of employees is not between 5000 and 10,000.
- Find the names of all companies that do not end with letter 'A'.

5. Using aggregate functions execute the following queries:

- Find the sum and average of salaries of all employees in computer science department.
- Find the number of all employees who live in Delhi.
- Find the maximum and the minimum salary in the HR department.
- 6. To execute the following queries using study the grouping commands (group by, order by)
 - List all employee names in descending order.
 - Find number of employees in each department where number of employees is greater than 5.
 - List all the department names where average salary of a department is Rs.10,000.
- 7. To write SQL queries to
 - Alter table 'Emp' and make 'enumber' as the primary key.
 - Alter table 'Company' and add the foreign key constraint.
 - Add a check constraint in the table 'Emp' such that salary has the value between 0 and Rs.1,00,000.
 - Alter table 'Company' and add unique constraint to column cname.
 - Add a default constraint to column ccity of table company with the value 'Delhi'.
 - Rename the name of database to 'Employee1'.
 - Rename the name of table 'Emp' to 'Emp1'.
 - Change the name of the attribute 'ename' to 'empname'.

Shri Vaishnav Institute of Computer Applications

- 10. To execute following queries using appropriate SQL statements to
 - Retrieve the complete record of an employee and its company from both the table using joins.
 - List all the employees working in the company 'TCS'.
- 11. To study the various set operations and execute the following queries using these commands:
 - List the enumber of all employees who live in Delhi and whose company is in Gurgaon or if both conditions are true.
 - List the enumber of all employees who live in Delhi but whose company is not in Gurgaon.
- 12. To study the various scalar functions and string functions (power, square, substring, reverse, upper, lower, concatenation) and execute the following queries using these commands:
 - Reverse the names of all employees.
 - Change the names of company cities to uppercase.
 - Concatenate name and city of the employee.
- 13. To study the commands for views and execute the following queries using these commands:
 - Create a view having ename and ecity.
 - In the above view change the ecity to 'Delhi' where ename is 'John'.
 - Create a view having attributes from both the tables.
 - Update the above view and increase the salary of all employees of IT department by Rs.1000.
- 14. To study the commands involving indexes and execute the following queries:
 - Create an index with attribute ename on the table employee.
 - Create a composite index with attributes cname and ccity on table company.
 - Drop all indexes created on table company.
- 16. To study the conditional controls and case statement in PL-SQL and execute the following queries:
 - Calculate the average salary from table 'Emp' and print increase the salary if the average salary is less that 10,000.
 - Print the deptno from the employee table using the case statement if the deptname is 'Technical' then deptno is 1, if the deptname is 'HR' then the deptno is 2 else deptno is 3.

17. To study procedures and triggers in PL-SQL and execute the following queries:

- Create a procedure on table employee to display the details of employee to display the details of employees by providing them value of salaries during execution.
- Create a trigger on table company for deletion where the whole table is displayed when delete operation is performed.

Text Books:

- 1. A Silberschatz, H.F Korth, Sudersan, "Database System Concepts", MGH Publication.
- 2. C.J. Date "An introduction to Database Systems"
- 3. Elmasri & Navathe, "Fundamentals of Database Systems", III ed. Morgan Kauffman
- 4. B.C. Desai. "An Introduction To Database Systems", BPB
- 5. Raghurama Krishnan "Database Systems", TMH

Name of Program : BCA + MCA

							TEACHING & EVALUATION SCHEME					
							T	THEORY	ľ	PRACTICAL		
COURSE CODE	CATEGORY	COURSE NAME	L	Т	Р	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	
BCCA307	COMPULSORY	Lab-II (Operating System Lab)	0	0	4	2	0	0	0	30	20	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

Q/A-Quiz/Assignment/Attendance, MST - Mid Sem Test.

***Teacher Assessment** shall be based on following components: Quiz/Assignment/Project/Participation in class (Given that no component shall be exceed 10 Marks)

Course Education Objectives (CEOs):

In this course students should understand how the operating system effectively manages system resources.

Course Outcomes (COs):

After successful completion of this course the students will be able to:

- Understand the types of Operating systems and analyze the process scheduling Algorithms and Case study on processing Scheduling.
- Understand the resource sharing among the processes in the system.
- Understand how to manage the memory during the process execution (Memory Management) and File Management system.

List of Experiments:

- 1. How to log in and get familiar with linux desktop.
- 2. Understanding linux shell.
- 3. Different types of text editors.
- 4. How to use vi editor.
- 5. How to correct typing errors.
- 6. Simple shell commands like date, cal, who, tty, uname, passwd. bc.
- 7. Use of commands pwd, cd, mkdir, rmdir, ls, pr.
- 8. How to use commands cat, cp, mv, wc, rm.
- 9. Working with file attributes.
- 10. Changing file permissions.
- 11. Changing ownership of files.
- 12. Granting of permissions.

Shri Vaishnav Institute of Computer Applications

Text Books:

1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Principles", 7th edition, John Wiley & Sons Inc, 2006.

Reference Books:

1. William Stallings, "Operating Systems – Operating System: Internals and Design Principles", 6th edition, Prentice Hall, 2005.

2. Andrew S Tanenbaum, "Modern Operating Systems", 3rd edition, Prentice Hall, 2007.